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Fig. 5. Quartz solubility in water as a function of water fugacity at 500°C and 1000 bars total pressure 
- omitting data for which log fo/h exceeds 0.12. Subscripts "0" and "I" refer to water containing zero 
and fmite argon concentrations respectively, so that solubility decreases upwards along the ordinate and 
argon concentration increases to the right along the abscissa. 

Fig. 4 gives Sommerfeld's data at soooe along with the quadratic least-squares curve 
found to best fit his points. Fig. S shows the least-squares quadratic best fitting those 
soooe data pOints having logio/il less than 0.12. A non-intercept model has been used 
as the calculated fit must pass through the origin. This has the additional advantage of pre­
serving resolution beyond the lowest experimental Ar concentrations. Excluding the badly 
scattered high-argon pOints significantly reduces the error of the calculated value for no. 
Similar statistical treatments of the 4000 e data produced results varying too widely with 
the order of computed fit to be considered useful. This effect is attributable to the signi­
ficantly greater scatter of the lower temperature data. 

The equations of the curves fitting the soooe data are , all points (Fig. 4): 

log CoIC1 = 4.171og 101/1 + 6.80 (log 10111)2 (12) 

selected points (Fig. S): 

logCoIC1 = 6.43 log 10111 - 19.8 (log/olld (13) 

From the first derivative of eq. 12 and 13 at the origin, the hydration number n of the 
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aqueous silica complex at 500°C is given by 4.2 (all points) ± 2.4, and 6.4 (selected points) 
± 1.5. The tolerance intervals were computed from confidence intervals of the regression 
coefficients of eq. 12 and 13, using a level of confidence of 90%. 

In order to preserve the characteristic tetrahedral coordination of silicon, only four of 
the surrounding oxygen atoms are directly bonded to the silicon atom. The remaining 
water molecules are probably associated with the complex only through weaker electro­
static attraction. Hence, a more realistic formula for the aqueous silica complex would be 
given by ~ Si04 'xH2 0, where x = n - 2. 

Sulfur-bearing aqueous silica complexes 

Quartz solubilities in subcritical Naz S aqueous solu tions have been given by Dickson 
(1966) and Learned et al. (1967). These authors tentatively postulated the existence of 
a sulfide or bisulfide-bearing (Le., Sz- or HS -) silica complex as an explanation for their 
observed high solubilities. 

It is possible to make a limited quantitative test for such complexing in a manner com­
pletely analogous to that outlined for sodium-silica complexing. 

The solubility model consists of eq. 2, 3, 4 and 8, plus the follOwing equations, and is 
based on tlle assumption that silica- sulfide complexes do not exist: 

'Y(W) "Y s'_(SZ-) 
K HS- = (HS) 

'Y(W), 'Y(Hz SiOl-) 
KH• SiO.- = ------­

'Y(H3 Si04 ) 

1:S = (NaHSo) + (HSl + (H2 S) + (SZ-) 

(OW) + (HSl + 2(SZ-) + (H3 Si04) + 2(Hz SiOI-) = (W) + (Na +) 

KH. S is the first dissociation constant of Hz S, in aqueous solution, K HS- is the second 
dissociation constant of Hz S, KH3SiO~ is the second dissociation constant of ~ Si04 , and 
all other quantities are as previously defmed. 

The dissociation constant for NaHS is completely unknown, but from the similarity 
between HS- and OH- we estimate that it should be very similar to K NaOH' and for the 
purposes of these calculations we assume it is identical. Values for KH.S and KHS- were 


